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Abstract

Applications running on exascale machines will be com-
plex in many ways. They will involve dynamic and adaptive
refinements, and will be composed of multiple, independ-
ently developed modules, often involving a multiphysics
simulation. The programming models of this era must have
several characteristics. First, they need to do away with the
notion of processors, and automate resource manage-
ment via adaptive runtime systems. Data structure-specific
frameworks and domain-specific environments will be
needed to further simplify programming. More importantly,
parallel mini-languages need to be developed, such that
each language captures only a restricted subset of possi-
ble parallel interactions, but allows for a simple expression
of them. Coupled with interoperability and parallel compo-
sition, which must be supported in many ways, including
message-driven runtime systems, this will create a produc-
tive ecosystem of parallel programming models for the
exascale era.
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Programming models to be used on the exascale machines
should be influenced by the needs of the classes of
applications that will run on these machines. We know
that many of these codes will rely on variable resolution
techniques, such as dynamic and adaptive refinements,
rather than uniform increases in resolution, to utilize the
higher computational capacity of such machines. This
will make programming more challenging, because of
issues such as dynamic load balancing. Also, applica-
tions will need to integrate independently developed
modules, including those arising from multiphysics com-
putations.

From this, it follows that the programming models (at
least a major category of them) need to free the program-
mer from worrying about what data is stored where, and
which computation happens on what processor. This
need to remove “processors” from the ontology of the
application programmer should be met by future models.
Overdecomposition (e.g. object-based overdecomposi-
tion), and virtualization are examples of such an approach.
With such approaches, mapping of work-units and data-
units to processors must be handled by an adaptive runt-
ime system.

An adaptive runtime system mediates communication
among work units – such as user-level threads, and mes-
sage-drive-objects – as well as communication between
work-units and data-units. Thus it can keep track of com-
munication affinities and their weights. It also explicitly
schedules execution of work units on processors, and
thus can keep track of the computational needs of each
work-unit. Based on such runtime monitoring, it can
migrate the units across nodes of a system – either peri-
odically or continuously – so as to handle dynamic load
imbalances. The runtime system for exascale systems
should also help effect proactive as well as post-fault
fault-tolerance.

Because of the complexity of exascale applications,
alluded to above, we need to make efforts to simplify
parallel programming further. Admittedly, techniques
such as overdecomposition and the consequent adaptive
runtime systems simplify programming because they
take away resource management concerns from the
programmer. However, expressing parallel interactions
will still remain substantially complex; in some cases,
it can become more complex than before, because of
the use of asynchrony to gain efficiency, and issues of
expressing coordination among multiple collections of
interacting objects. There are at least two complemen-
tary ways for further simplifying parallel program-
ming.

1. Frameworks: This avenue is known to HPC
researchers and there probably is a consensus that
appropriate frameworks can enhance productivity.
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In my view, framework includes both data-struc-
ture specific frameworks (DSSF) and higher level
domain specific frameworks. We know that a
small number of data structures underlie most par-
allel CSE codes: structured meshes including
adaptively refined ones, unstructured meshes, par-
ticles distributed in uniform cells or via spatially
decomposed trees. Each DSSF can embody com-
mon functionality for parallel use of one such data
structure, so it does not have to be programmed
repeatedly. In some cases, several frameworks
have been proposed and built, but their utility and
use has remained limited, probably because of
their tendency to “take over” the entire data struc-
ture from the application developer, and/or their
lack of interoperability (see below). More research
in this area is therefore needed. Similarly, higher
level domain-specific environments (e.g. computa-
tional-astronomy environment) can collect multi-
ple techniques making it easy to put together a
complete code with different combination of strat-
egies. 

2. Simpler but incomplete languages: Compared
with frameworks this idea is probably more novel
and controversial. The basic idea is that restrict-
ing modes of interactions among parallel entities
leads to simpler languages. Such a restricted lan-
guage may not be “complete” in that it cannot
express all parallel interactions (and therefore
cannot express all algorithms and application mod-
ules); yet, if it covers a significant class of modules,
and substantially simplifies expression of programs
that it does cover, it is a useful language. There are
several candidates for such languages, including
those that allow only static data flow patterns, and
those that allow restricted access patterns in a glo-
bal address space. We should identify and develop
such languages. One way in which some languages
may become “simpler” is by outlawing non-deter-
minacy. Another desirable property worth explor-
ing is languages that cleanly separate parallel
code from sequential (typically “science”) code.
Note that I am not advocating that all languages
should separate parallel and sequential codes, but
rather that some of the languages in our future
language ecosystem may attain simplicity in that
fashion.

3. Interoperability and parallel composition: The
above approaches will succeed (in the context of
multiphysics, multiscale, and multimodule exas-
cale applications) only if they can be made to
interoperate efficiently without losing simplicity.
This means entities from different modules must
be able to interleave their execution on individual

processors without them being aware of each
other explicitly. The related concept of parallel
composition can be illustrated with a simple
example: consider parallel modules A, B, C, and
D, which are be executed as: [A; (B || C); D]; that
is, work in B and C, each of which consists of
multiple work and data units spread across all
processors, is concurrent, and so should interleave
in the interest of efficiency. Therefore, idle time
in B can be overlapped with useful computation in
C and vice versa. Spatial separation, where B and
C execute on disjoint sets of processors, is not
adequate in the context of dynamic and complex
applications; nor is it enough to force a sequenc-
ing, e.g. by executing B before C on all proces-
sors, since that precludes the adaptive overlap
mentioned above. The current MPI-based execu-
tion models do not support such concurrent com-
position. Message driven execution appears to be
a pre-requisite for supporting such interoperabil-
ity, although the research community may aim at
finding multiple alternative methods for support-
ing interoperability.

Interoperability also avoids the need for declaring a
single programming paradigm a “winner.” I expect that
multiple models will be developed and will survive in
the parallel programming toolkit. Programmers will
choose the model best suited for the particular module
they are coding, possibly further influenced by their
subjective tastes and backgrounds, in addition to the
innate needs of the module being coded. Interoperabil-
ity will allow programming models to be tested and
evaluated (e.g. by coding a single module in a large
application) with ease, leading to a rapid evolution of
programming models. In biological evolution, the prin-
ciple of “survival of the fittest” does not lead to a single
species to the exclusion of others, but to a stable eco-
system. Similarly, I expect such an evolution of parallel
programming models to lead to an ecosystem of multi-
ple interdependent programming models, rather than a
single model that is declared a winner and imposed on
all applications.
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